Modeling and Control for Turboelectric Aircraft

Aidan Dowdle
adowdle@mit.edu
NASA GRC AS&ASTAR Fellow
11/1/17

This material is based upon work supported by the National Aeronautics and Space Administration under Grant No. NNX17AB22H issued through the NASA Education through NASA Aeronautics Graduate Scholarship activity. Any opinions, findings, and conclusions or recommendations expressed in this thesis are those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration.
Many proposed conceptual designs (e.g. STARC-ABL)

However, various electric propulsion architectures possible\(^{(1)}\)

Objective: use modeling and systems-level analysis to study the capabilities of these architectures
Modeling Research Activities

- LEARN Project - Propulsion Architecture Assessment
- S.M. Thesis - Requirements Analysis via Dynamics and Control
- Center-Based Research Experience
Modeling Research Activities

- LEARN Project - Propulsion Architecture Assessment
- S.M. Thesis - Requirements Analysis via Dynamics and Control
- Center-Based Research Experience
LEARN Project

• Joint effort between MIT, USC, and Aurora Flight Sciences
 • PI: Professor Edward Greitzer

• Assessing propulsion systems using Multi-Disciplinary Optimization (MDO)

• Specific type of MDO used is Geometric Programming\(^{(2)}\)
Electrical Components Modeled

- Airframe
- Mechanical
- Electrical
 - Battery
 - Power Cables
 - PMBLDC Machines
 - Power Electronics
 - Circuit Protection
- Thermal Management System
Ex.: Cable Model

Variables

- \(A_c \) (Conductor Area)
- \(A_{di} \) (Dielectric Area)
- \(a \) (Conductor Radius)
- \(b \) (Cable Radius)
- \(d_c \) (Conductor Density)
- \(d_{di} \) (Dielectric Density)
- \(E_{\text{max}} \) (Max Field Strength)
- \(I_{\text{max}} \) (Max Current)
- \(\ell \) (Cable Length)
- \(m \) (Mass)
- \(P_{\text{max}} \) (Max Power)
- \(R \) (Resistance)
- \(V_{\text{max}} \) (Max Voltage)
- \(p_V \) (Max % Voltage Drop)
- \(\eta \) (Litz Wire Packing Factor)
- \(\rho \) (Conductor Resistivity)

Performance Model

\[
\begin{align*}
R & \quad I \\
V_{\text{source}} & \quad V_{\text{load}} \\
- & \quad +
\end{align*}
\]

Sizing Relations

- \(A_c = \pi a^2 \eta \)
- \(A_{di} \geq \pi (b^2 - a^2) \)
- \(m \geq d_c A_c \ell + d_{di} A_{di} \ell \)
- \(R = \rho \frac{\ell}{A_c} \)
- \(E_{\text{max}} \geq \frac{V_{\text{max}}}{b-a} \)
- \(I_{\text{max}} R \leq p_V V_{\text{max}} \)
- \(P_{\text{max}} = V_{\text{max}} I_{\text{max}} \)

\[I \leq I_{\text{max}} \]
\[Q = I^2 R \]
\[P_{\text{load}} = IV_{\text{load}} \]
\[P_{\text{source}} = IV_{\text{source}} \]
\[V_{\text{load}} + IR \leq V_{\text{source}} \]
\[V_{\text{source}} \leq V_{\text{max}} \]
Ex.: Integrated Electrical System

- 600 V vs. 7 kV system for 1 MW power delivery

\[
\begin{align*}
R_{\text{int}} & \quad \text{Battery} \\
R_{\text{cable}} & \quad \text{Cable}
\end{align*}
\]

\[P_{\text{load}} = V_{\text{cab,load}}I = 1 \text{ MW}\]

\[V_{\text{cab,load}} = 600 \text{ V}\]

\[m_{\text{batt}} = 707 \text{ kg}\]

\[m_{\text{cable}} = 11.4 \text{ kg}\]

\[m_{\text{total}} = 718.4 \text{ kg}\]

\[600 \text{ V} \rightarrow 7 \text{ kV}\]

Saves 47.1 kg

\[V_{\text{cab,load}} = 7 \text{ kV}\]

\[m_{\text{batt}} = 671 \text{ kg}\]

\[m_{\text{cable}} = 0.33 \text{ kg}\]

\[m_{\text{total}} = 671.3 \text{ kg}\]
Modeling Research Activities

- LEARN Project - Propulsion Architecture Assessment
- S.M. Thesis - Requirements Analysis via Dynamics and Control
- Center-Based Research Experience
Requirements Analysis

Flight Path

- Current location
- Velocity
- Angle-of-Attack
- Environment (e.g. wind gusts)
- Human Pilot

\[\sigma_x, \sigma_y, \sigma_z \]
Requirements Analysis

- Prior analysis would not account for coupling
- Can take them into account using plant model & covariance analysis
 - Thesis advised by Dr. Marija Ilic

![Diagram showing the relationships between current location, velocity, angle of attack, environment, and human pilot, with sigma_x, sigma_y, sigma_z as inputs to flight path.]
Aircraft Under Study

• Medium-sized (~150,000 lbs), tube-and-wing, turboelectric aircraft

State variables:
- \(v \) – velocity
- \(\alpha \) – angle-of-attack
- \(\theta \) – pitch angle
- \(q \) – pitch rate

Control inputs:
- \(\delta_t \) – throttle
- \(\delta_e \) – elevator

States evolve nonlinearly, e.g.

\[
\dot{v} = \frac{(T \cos(\alpha) - Q_s C_d)}{m} - g \sin(\theta - \alpha)
\]
Incorporating Electric Components

• A turbine & generator powers the propulsor

Parameters
• J – motor inertia
• Ω – nominal rotor speed
• δ – rotor speed deviation
• f – total motor damping
• P_m - mechanical power
• P_e - electrical power

$$J \ddot{\Omega} + f \dot{\delta} \Omega = P_m - P_e$$
Example Applications

- Disturbance response
 \[\dot{\Sigma}(t) = A\Sigma(t) + \Sigma(t) A^T + B_1 W(t) B_1^T \]

- Sensor bandwidth requirements
 \[C_2(sI - A + K_{k_f}C_2)^{-1} K_{k_f} \]

-3 dB

Bandwidth
Modeling Research Activities

- LEARN - Propulsion Architecture Assessment
- S.M. Thesis - Requirements Analysis via Dynamics and Control
- Center-Based Research Experience
Center-Based Research Experience

• NASA Glenn Research Center

• Aurora Flight Sciences\(^{(4)}\)
Summary

- Research activities supported by NASA Glenn Research Center

- Geometric programming (LEARN)
 - Electrical component modeling
 - Sensitivity studies on propulsion architectures

- Requirements Analysis via Dynamics (S.M. Thesis\(^3\))
 - Take into account coupling between subsystems to perform a mission
 - Created disturbance environment and tested control design

- Center-based research experience at NASA GRC & AFS
References

